
Tutorial #5 - Automated Configuration

Introduction
This tutorial aims to demonstrate the mechanisms for automated configuration of
Variability Models through the use of the VariaMos PLEIADES back-end. This back-end
service allows you to perform configuration tasks on your models using a JSON-based
query specification system.

Prerequisites:
1. An internet connection and access to VariaMos at:

https://develop.variamos.com/
2. Your instructor will notify you if the server is available, if not or it is inaccessible

from your network, you will need to run the translation tool locally. The currently
available endpoint is:
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query

3. If the endpoint is inaccessible, you must run the server locally. To do so you
must have docker installed. Here’s a short tutorial to set up docker (in french):
https://docs.google.com/document/d/1LsH29Ku7TtSj9r3b5oTuGAeFEjA1eyxNP
J-iho8jGX4/edit?usp=sharing

4. (With docker) Simply run:
docker run -it -p 5000:5000 ccorre20/semantic_translator

5. (Without docker): Ask your instructor for the API endpoint to use in the following
sections. By default the endpoint is
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query as
mentioned above.

https://develop.variamos.com/
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query
https://docs.google.com/document/d/1LsH29Ku7TtSj9r3b5oTuGAeFEjA1eyxNPJ-iho8jGX4/edit?usp=sharing
https://docs.google.com/document/d/1LsH29Ku7TtSj9r3b5oTuGAeFEjA1eyxNPJ-iho8jGX4/edit?usp=sharing
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query

Part 1: Configuration Tasks
Consider the following model:

You can download it from the following link:
https://drive.google.com/file/d/1wbOBdHW0LrZPJKrx07kBg0LboXdHMQWn/view?usp
=sharing

Load it into Variamos. Once you've done this, we can now begin exploring the
configuration capabilities offered to us by the system. As before with the analyses we
performed over the different models in Tutorial 4, our primary interest in automation is
tied to the need to be able to reason over large models with the least amount of manual
effort. In the case of configurations, we can identify 3 general tasks that are of interest:

1. Identify one or more specific configurations if they exist (and visualize them), or
be notified of their absence otherwise.

2. Complete (and visualize) a partially defined configuration or notify its
unsolvability (lack of satisfying solution) given the constraints in the model.

3. Calculate and order configurations according to some optimization function.

https://drive.google.com/file/d/1wbOBdHW0LrZPJKrx07kBg0LboXdHMQWn/view?usp=sharing
https://drive.google.com/file/d/1wbOBdHW0LrZPJKrx07kBg0LboXdHMQWn/view?usp=sharing

Tasks 1 and 2 share a particularly important aspect in common: the same queries are
used for both, the only difference is whether or not specific elements are marked as
selected (or deselected). Recalling what was shown in Tutorial #4, the query for a single
solution is as follows:
{

"solver": "swi",

"operation": "solve"

}

The query for finding n solutions, with n=2 in this example is as follows:
{

"solver": "swi",

"operation": "nsolve",

"operation_n": 2

}

Let's now consider the effect of running our very first query on the above model by
running it as follows:

We should then observe the following in the results tab:

Do note that "Solution 0" does not mean that 0 solutions were found: it merely means
that this is the response to the very first query we sent (counting from 0 as is
customary in programming languages). If we click on "Visualize", we'll observe a
specific configuration applied to the model:

Now that we've obtained this configuration, if we inspect it, we can indeed conclude
that it satisfies all the constraints in the model. Now, we might well like to see other
possible configurations as determined by the solver, which we'll examine next.

N.B.: Given the nature of the solving procedure, it is not simple (and occasionally
outright impossible) to control the order in which solutions are calculated, since, as a
model and its space of possible configurations grows, the solver can only, in practice,
traverse a limited portion of it in a reasonable amount of time. This is not a technical
limitation, but rather a fundamental limitation with any automated reasoning task whose
underlying nature is inherently combinatorial.

Let's now return to the query modal and click on "Reset model configuration state" to
return the model to its default state. Let's now run the second query outlined above,
and ask for more (in this case 2) configurations. To do this load the second query into
the "Query" box as depicted below:

If we run this query and return to the "Results" tab, we should observe the following:

Which tells us that, unsurprisingly, there are two solutions, which we may visualize just
like in part 3 of Tutorial 4. (You do not need to reset the model to switch between them,
only to return the model to the default state.)
The two configurations we obtain are:

And

As can be seen, the second of these configurations is a small variation of the first with
the inclusion of F9.

If we ask for, for example, 10 configurations, by changing the query to the following:
{

"solver": "swi",

"operation": "nsolve",

"operation_n": 10

}

We will observe the following result:

Which, recalling what was said in Tutorial #3, tells us that there are 9 possible solutions
to the model. This tells us, then, that, while we requested 10 solutions, only 9 really
exist. We can, of course, visualize each of them just as we did with the previous query.

With this done, we can now turn to the second task mentioned above. Let's suppose
we want to find a configuration that in addition to respecting all of our model's
constraints, has a certain set of features selected. For the sake of our example, let's
select the F5 feature (following the instructions provided in tutorial 4, that is, clicking on
the question mark on the top right corner of F5 until we see the green check mark
denoting "selected".

With this done, we can once more ask for 10 solutions as before and we observe the
following (I previously cleared the query results, but this is optional):

What this indicates is perhaps a bit surprising: there is only one solution where F5 is
selected, due to all of the other relationships present in the model.

If we continue with our experiment on this model, and set our configuration as follows,
by selecting, for instance, F5 and F2 as shown:

And we once more rerun our query, we will observe the following:

Which tells us that indeed F5 and F2 can never coexist, and, if, for example, this was a
particular set of requirements we wished to have for a specific product, it would not be
feasible and we must reconsider our model and its associated requirements.

We can rerun a similar experiment to that done with F5 by asking the opposite
question, that is, deselecting a specific feature, for instance, asking for F4 NOT to be
included as follows:

If we rerun our query from above for this partial configuration, we observe that there are
only 4 products that satisfy this partial configuration.

In any of these cases, it is of course possible to mix and match selected and excluded
features in a given model, which will impact the set of possible products.

Part 2: More complex configuration tasks
To illustrate some more powerful capabilities of this system, and in particular cover our
much more complex case of optimizing configurations according to different metrics,
let's now augment the model used in Tutorial #4 with attributes representing their cost
and assigning some values to each of the concrete features to obtain the following
diagram:

This modified model is available at (it is perhaps best to use this version to ensure that
all works just as in the tutorial):
https://drive.google.com/file/d/1YVhY5HES18OXQnqAu2FYXJUE4YGDxqlI/view?usp=
sharing
N.B. Due to a technical limitation, for this portion of the tutorial the
"CustomizedTabbing" feature had to be renamed to "Customised" (if you want to use
the modified model available on the above link, this change has already been done for
you) to avoid a conflict with the "Tabbing" feature in one of the processing steps.

We can now use the optimization capabilities of our reasoning system (mentioned in
Tutorial #4) to find out what is the most expensive product we can make within the
product line based on these costs. To do so, we must first add a definition of what the
notion of "total cost" is for our model. Intuitively it should be the cost of whatever

https://drive.google.com/file/d/1YVhY5HES18OXQnqAu2FYXJUE4YGDxqlI/view?usp=sharing
https://drive.google.com/file/d/1YVhY5HES18OXQnqAu2FYXJUE4YGDxqlI/view?usp=sharing

features we select. We can express this notion by adding the following constraints to
the arbitrary constraints for our model:
(int TotCost)

(= TotCost ((VoiceControl * VoiceControl::Cost) + (Customised * Customised::Cost) +

(Advanced * Advanced::Cost) + (Classic * Classic::Cost) + (Spatial * Spatial::Cost)))

This encodes essentially the fact that the TotCost variable is an integer and is related
to the sum of all the costs, each multiplied by the presence or absence of a given
feature. We can then add this to the arbitrary constraints we defined for our model to
obtain the following:

With these constraints we can now write an optimization query that will allow us to
find the most expensive product (recalling our query definition explanation in tutorial
#4):
{

"operation": "optimize",

"solver": "swi",

"optimization_target": "TotCost",

"optimization_direction": "max"

}

If we run this query and visualize the result we will obtain the following:

N.B.: As you can see, not only the features but also their attributes were automatically
configured in such a way that it respects not only the variability requirements but also
the requested optimal configuration requirement. However, the attributes resetting
capability is not yet implemented in the tool, so, please reload your model before the
next step and reinsert the arbitrary constraints.

If we now ask the opposite question: what is the cheapest product that can be
produced by our product line? Using the following query:
{

"operation": "optimize",

"solver": "swi",

"optimization_target": "TotCost",

"optimization_direction": "min"

}

If we run this query, we will obtain the following result:

An interesting point of note is that the cardinality we defined for "Customised" is
defined as being from 0 to 3, because one can have either just normal tabbing as in
most modern browsers, or up to three customised tabbing systems in addition to the
basic one. Given this particular constraint, it should then be no wonder that this
particular route is chosen. We can infer from this the following, our notion of cost isn't
entirely well founded for the model, and that perhaps we need to associate a cost to
our tabbing module to reflect this notion. Let's then (REMEMBER TO RELOAD THE
MODEL GIVEN THE ISSUE NOTED ABOVE), add a cost of 5 to the Tabbing feature as
follows:

Now, let's modify our equation for total cost adding the cost of tabbing as follows:
(int TotCost)

(= TotCost ((Tabbing * Tabbing::Cost) + (VoiceControl * VoiceControl::Cost) +

(Customised * Customised::Cost) + (Advanced * Advanced::Cost) + (Classic *

Classic::Cost) + (Spatial * Spatial::Cost)))

Let's add this again to our model constraints to obtain:

And let's now once more run the query asking for the cheapest possible product to
obtain the following solution:

As can be seen, "Tabbing" is no longer part of the cheapest possible product, since we
now have a more detailed and accurate representation of the cost of the products.
Nevertheless, if we analyze the first result we obtained, which corresponds to the most
expensive product, this change has no effect and it remains so, as neither "Advanced"
or "Classic", and have only effect on the "Navigation" portion of the diagram.

What this serves to illustrate is that even when working on configuration tasks,
automated reasoning systems not only save us considerable amounts of time, but they
also allow us to determine where we might have modeled incorrectly. However, it also
serves to show that human involvement is also important, no matter the sophistication
of the analysis tools, in order to interpret the results and to catch potential flaws in the
problem posed to the analysis tools.

Part 3: Practical Exercise
Please help us to improve the usability of this under-development tool answering the
following usability test questionnaire: https://forms.gle/qu2vfyL3c8qTS8UY9

Please, do the following:
1. Reload the model used for Part 1 of this tutorial.

2. Calculate how many solutions there are when selecting "F1".
3. Calculate how many solutions there are when deselecting "F1".
4. Calculate how many solutions there are when selecting "F4" and deselecting

both "F3" and "F1".
5. Reload the model used for Part 4 of Tutorial 4:

https://forms.gle/qu2vfyL3c8qTS8UY9

For your convenience, this model is provided to you in the following link:
https://drive.google.com/file/d/1TVasQbclYRZZ_Rdzak47q1T9iyv4QJgh/view?usp=sha
ring

6. Insert the following constraint into your model. It defines the TotFeat variable as
the total number of concrete features that are selected.
(int (0 10000) TotFeat)

(= TotFeat (Shipping + ContactUs + Rating + ListOfProds + SharingSystem +

ProdModel + ProductMgmt + Comments + Cart + OnlinePayment + OfflinePayment +

BasicMgmtViews + CommentMgmt + ProductMgmt + UsersHandling + UserMgmt + Login +

UserModel + BasicWebViews + Account + DemoData + DBManagement))

7. Using "swi", calculate the number of features in the product with the largest
number of features.

8. Using "swi", calculate the number of features in the product with the smallest
number of features. (Hint: change "max" to "min" in your query).

https://drive.google.com/file/d/1TVasQbclYRZZ_Rdzak47q1T9iyv4QJgh/view?usp=sharing
https://drive.google.com/file/d/1TVasQbclYRZZ_Rdzak47q1T9iyv4QJgh/view?usp=sharing

