Tutorial #4 - Automated Verification
of Models

Introduction

This tutorial aims to demonstrate the mechanisms for automated analyses of Variability
Models through the use of the PLEIADES back-end. This back-end service will allow
you to perform queries on your system using a JSON-based query specification
system. In this tutorial you will learn the basic operation of the system and how it
interacts with the VariaMos editor.

Prerequisites:

1. An internet connection and access to VariaMos at:
https://develop.variamos.com/

2. Your instructor will notify you if the server is available, if not or it is inaccessible
from your network, you will need to run the translation tool locally. The currently
available endpoint is:
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query

3. If the endpoint is inaccessible, you must run the server locally. To do so you
must have docker installed. Here’s a short tutorial to set up docker (in french):
https://docs.google.com/document/d/1LsH29Ku7TtSj9r3b50TuGAeFEjA1eyxNP
J-iho8jGX4/edit?usp=sharing

4. (With docker) Simply run:
docker run -it -p 5000:5000 ccorre20/semantic_translator

5. (Without docker): Ask your instructor for the APl endpoint to use in the following
sections. By default the endpoint is
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query as
mentioned above.

https://develop.variamos.com/
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query
https://docs.google.com/document/d/1LsH29Ku7TtSj9r3b5oTuGAeFEjA1eyxNPJ-iho8jGX4/edit?usp=sharing
https://docs.google.com/document/d/1LsH29Ku7TtSj9r3b5oTuGAeFEjA1eyxNPJ-iho8jGX4/edit?usp=sharing
http://ec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query

Part 1: Creating the model

For this portion of the tutorial we will be using the following simple model:

F1
er OW
()
F2 | F4 |
Mandatory Exchries Mandatory
& .
F3 | F5 |

It is available for download in the following link:
https://drive.google.com/file/d/1mDFUfbjz7yUGM37Xi 7-OdFwamgb4g0G/view?u
sp=sharing

You can also create it yourself with the editor.

Note: If you load the file and the names of the features are missing, simply click
again on the model in the explorer and they should appear.

https://drive.google.com/file/d/1mDFUfbjz7yUGM37Xi_7-OdFwamgb4g0G/view?usp=sharing
https://drive.google.com/file/d/1mDFUfbjz7yUGM37Xi_7-OdFwamgb4g0G/view?usp=sharing

Part 2: Running verification queries on the model

Background - Queries

Our goal is to find defects that may exist in the model. Though for such a simple
model, they can be found through manual inspection, this does not scale to large
models that may have hundreds of features or more. To do this, we must make use of
automated analysis techniques akin to those illustrated in Tutorial #3. That being said, it
is not necessarily simple or evident how to formulate the requests as illustrated in that
tutorial. More specifically, they require having an understanding of the underlying
solver's API and how to control its execution.

To remedy this, we will make use of the capabilities incorporated into the PLEIADES
VariaMos module, which extends the translation functionality presented in Tutorial #3 to
allow one to automatically run different queries on the models constructed within
VariaMos. These queries are analogous to the "queries" run within SWI-Prolog in the
earlier tutorial in that they provide a specification of the reasoning task to be performed
by the inference engine. The fundamental difference with the queries that we will now
present is that our new query system presupposes no knowledge of the underlying
programming environment and that the queries are thus formulated at a higher level
that corresponds only to the verification task at hand.

The query system we have formulated is based on JSON specifications that allow
encode the reasoning request (query) that one wishes to perform on the currently
selected model. In addition, VariaMos has been tightly integrated with the PLEIADES
reasoning service, allowing for feedback to become immediately visible on the user
interface, thus greatly facilitating the tasks at hand.

The query language relies on JSON documents that follow the following schema:
{
"solver": "<The constraint solver you
"operation": "
"operation n":

"optimization target": "<Opti oF: cr defining the optimiz

"optimization direction": nal parameter defining minimization

"iterate_over": [

The "solver" field currently allows for the use of three different systems: Gecode
(through the MiniZinc language and programming environment, denoted as "minizinc"
in the JSON), SWI-Prolog (denoted as "swi"), and the Z3 solver (denoted as "z3").
Their selection is based on both the performance of each on the given types of
constraints for your language and the types of operations that are required. In
particular, Gecode (through minizinc) does not currently support some operations, and
while z3 is by far the fastest solver, hasn't been fully integrated, and hence is untested
and not fully featured, it has limited support for some operations and characteristics, in
particular enumerating many solutions quickly and dealing with attributes.

The "operation" field encodes the basic reasoning operation to be performed. These
range from satisfiability checks (denoted as "sat"), finding a concrete solution (denoted
as "solve"), finding n solutions (denoted as "nsolve", which also needs to be
accompanied by the "operation_n" parameter specifying, at most, how many
solutions are to be returned), and solving an optimization problem (denoted as
"optimize", which must be accompanied by the "optimization_target" parameter
which defines the variable over which the optimization problem will be defined, and by
the "optimization_direction" parameter which can be either "min" or "max" to
determine whether it is a maximization or minimization problem).

The "iterate_over" parameter serves primarily to determine how to run queries that
require iterating over elements of the model. For example, determining which features
are "dead" in a feature model is a matter of checking whether each of the features can
be set to selected in a configuration: otherwise they are "dead". There exist other
checks that make use of this parameter that we will explore as we move through this
tutorial.

Writing simple queries

We will now learn how to actually write a query to reason automatically on our model.
Begin by clicking on the “wrench and screwdriver” icon above the project explorer:

B X &
= M Test
= <4 Test
= © Domain engineering
= 1= Models

You should now see the following modal (your version may be without the “Translator
Endpoint” field). If you are using docker locally you must use the default endpoint
shown:

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Translator Endpoint

http://localhost:5000/query

Enter the adress of the endpoint to use for the queries.

Query

Enter Query Name

Submit Query Sync CLIF Semantics Reset model configuration state

We'll begin with the most simple of analyses, checking whether the model has any
solutions at all. This will allow us to observe the query language in action.

To do this, we first write the following query in the “Query” text box:
{

Wimm &

"solver": "mini

"operation":

}

This simple query asks the back-end for two things:
e To use Gecode (through MiniZinc) as the solver.
e To do a “satisfiability” check on the model, that is, check for the presence of at
least one solution that satisfies the constraints from the model (this is the

“operation” field in the JSON). The “sat” keyword is our encoding for the
simple satisfiability check operation. We’ll explore the other options available as
we move through the tutorial.

Your query should then look as follows in the modal:

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Translator Endpoint

http://localhost:5000/query
Enter the adress of the endpoint to use for the queries
Query

{

"solver": "minizing",
"operation": "sat"

}

Enter Query Name

Submit Query Sync CLIF Semantics Reset model configuration state

Click on the “Submit Query” button in order to run the operation and switch to the
“Results” tab in the modal.

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Solution 0 SAT

Clear Query Results Reset model configuration state

As can be seen, the first result (numbered as "Solution 0") tells us that the model is
indeed “SAT”, or, in other words, that there is a solution for the mode (in verification
terms, it means that the model is not void). We, of course, might prefer to see the
solution directly in the modeling environment than trying to reconstruct it from the
output of the solver. Since this operation is fundamentally different, namely, it involves

obtaining a concrete solution, we must use the following query:
{

"solver":

"operation":

}

As can be seen from the code above, this query is quite similar to the previous one, but
we are asking for a concrete solution instead of just its existence (which involves
changing the operation from “sat” to “solve”). In addition and to illustrate the flexibility
of this approach, we have also opted to utilize the Z3 solver instead of MiniZinc, though
their behavior is and should be ultimately identical. If one inputs this query and runs it,
one will observe the following in the “Results” tab:

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Solution 0 SAT
Solution 1

Clear Query Results Reset model configuration state

This new result can then be accessed directly from the application by clicking on the
“Visualize” button, closing the modal and reselecting the model from the explorer on
the left side to reveal the modified model:

F1

zf . : |:._.:|
9 | s

F2

[-

| - - Mandatory
Mandatory Exchades ' ’

‘ &__ o

This overlays the solution directly on top of the model. This coincides with the solution
one would find manually but required no direct manipulation of the solver.

Once this has been done, we might want to check for other solutions or otherwise
manipulate the model but since it has had the solution overlaid, we can reset the model
to its original state by reopening the “Query” modal and clicking on the “Reset model
configuration state” button which will remove the selection from the model.

F1

Mandatory kprma%

‘ F4

F2

Mandatory
Mandatory

F5
F3 |

With this done, let’s now check for other solutions by asking our solver to produce a

larger set of solutions. To do this, we modify our query slightly into the following:
{
"solver": "swi

"operation": "nsolve",

"operation n": 2

}

This exemplifies another operation available in our query language which is asking for a
set of solutions instead of a single one. To do this we change the “operation” to
“nsolve”, meaning “solve n times”. This operation must be accompanied by another
parameter, “operation_n”, that tells the solver to find (at most) n solutions. The point
about “at most” is worth highlighting, since there are no guarantees that the requested
number of solutions do exist. What the solvers will try to do is solve up to the
requested amount and return as many solutions as are found. For illustrative purposes
we also utilize the “swi” solver backend in this case (to be clear, we change the solver

to illustrate the flexibility of the tool). Moreover, this corresponds to one of the semantic
checks, that is, checking for a false product line, which implies simply determining that
at least two solutions exist, whose manual operation we covered in the earlier tutorial.

If we input this new query and run it, we will observe the following results:

Queries X
Query Results CLIF Semantics Solver Specific Semantics Saved Queries
Solution 0 SAT
Solution 1
Solution 2
Clear Query Results Reset model configuration state

Since we obtain exactly the same response, this illustrates that there is indeed only a
single solution and we are sure therefore that no other solution can exist in this model,
and therefore this has failed the check for whether this is a false product line.

This leads us naturally to the final part of the analysis which relates to determining the
causes of this problem. As one can probably determine by manual inspection, the
problem seems related to the “excludes” relation between F3 and F4. Since we saw
that F4 is not included in the solution, let’s try to see if selecting it leads to problems.
Let’s then check for problems related to the “F4” feature manually. Click on the
“Question Mark” icon on top of Feature F4 util it displays a green check mark as shown
below:

F1

o -,
- ",

Mangétory CEWQE'
- ° .
S —5 Q
F2 ¢ : i -
7
l _..a-"'-..-
| Exclufioe Mandatory
Mandatory Exchtes i et
g‘ , F5

This means that we have “set” our feature as “Selected”, meaning that it must appear
in the solution as selected (True or 1).

We can now rerun our query asking for a single solution (with any of the solvers) and
we should observe the following result:

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Solution 0 UNSAT

Clear Query Results Reset model configuration state

As can be seen, the model is unsatisfiable and no solution can therefore be found, so
we know that this feature is “Dead”, that is, cannot be included in any solution. This,
however, is not the ideal way of proceeding since we would need to do this analysis
manually for every feature we suspect of being defective. What we should do, instead,
is run a single query that will perform this analysis automatically for us. To clean up our
results tab, first click on “Clear Query Results” to reset the saved solutions. Next, we

will use the following “iterative” query specification:
{

"solver": "minizinc",

"operation": "sat",

"iterate over": [
{
"model object": "element",

"object type":

"with value": 1

Before we run it, it is important to remind ourselves of two things: first, that checking
for a dead feature in Feature Models is essentially determining whether a model is
satisfiable if a given feature is set to selected; and, second, that setting a feature to
selected, in terms of its semantics, is saying that the feature’s associated variable is
equal to 1.

As can be seen, it is very similar to the satisfiability query we have already done before,
but includes the additional field “iterate_over”. What we mean precisely by iteration is
that we will run the operation multiple times, once for each element in the model that
matches the specification for the iteration. The “iterate_over” portion of the
specification takes a list with objects determining which model elements meet these
criteria, somewhat similar to a “select ... where” query in SQL. In this particular case
we are telling the system that we want to iterate through the “elements” (denoted as
“model_object” : “element” in the spec), that is, the nodes of the graph. We also add
the parameter “object_type” which filters these elements depending on their type. This
model has two types of nodes, a root feature and several concrete features. Since we
know the root is always included no matter what, we are only interested in the concrete
features. This “object_type” filter takes in a list of types to iterate over, which in this
case has only the “ConcreteFeature” type since it is the only thing that interests us.
Finally, in the specification, we add the “with_value” parameters, which tells the
iteration specification what it should do with the elements it will iterate over. In this
case, it will, as mentioned above, the variable associated with each feature to 1. (N.B.
The system currently only accepts integers in this parameter.)

If we run the query, we will observe the following result, telling us that two elements ran
into problems with this iterative query:

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Solution 0 UNSAT

Solution 1 2 elements failed query
Clear Query Results Reset model configuration state

Now click the visualization button, close the modal, and you should see the model
change into the following:

F1
o "
_{/'{ \"-\\
. .,
Mangstory 'pﬁngl
g
L , F4
F2 |
- 4 .-'d-.3
| __.-"-..--
| Exglw:lié':.f Mandatory
Mandatory - = :
' - e
‘ | F5
F3

These one-way signs now indicate that both features F4 and F5 are “Dead” and can
never be selected in any configuration since they failed the satisfiability check. In the
general case, they will be applied to any element whose iteration leads to UNSAT. With
this, we see that with considerably less effort we have managed to perform the same
reasoning operations as before to determine flaws in this model, and even found that
given the mandatory relationship between F4 and F5, its “dead” status carries down to
it, without needing to manually check each variable.

Part 3: Scaling up to a larger model

We will now be using the more complex model from Part 4 of Tutorial #3.

WebBrowser
M ;_L'.e:i".'f:.u ry Man f:-: ry 0':\;‘[1&:@
P = - Y et
L _ _ _ Mavigation 1 | WoiceControl | L _ _ TextToSpeech _ _
! | Wersion: null I |
| | | |
________ — =1 _—_ —_- — - - — - - = =
~ /
s
___________ \4 - I
Tabbing Advanced
:_ ______ T T 7 g4 ———1 Rangs | | Range l——]
: ! \1.2)/ L1/
| | — —
__________ 1
I I
h:i'.-icll.la}: ardinality J. .L
CustomisedTabbing | | Spatial | | Classic

This model has been made available for download and import into VariaMos in
the following Link:
https://drive.google.com/file/d/1aPOFPh17BCo8INkC3CpZPnCwf- wPjWJ/view?usp=s

haring

Let's now run some analyses on this model. To begin, let's simply check if a solution

exists. To do so, we can simply use our simple query:
{

"solver": "swi",

"operation": "sat"

}

If we run this query we will observe the following:

https://drive.google.com/file/d/1aP0FPh17BCo8INkC3CpZPnCwf-_wPjWJ/view?usp=sharing
https://drive.google.com/file/d/1aP0FPh17BCo8INkC3CpZPnCwf-_wPjWJ/view?usp=sharing

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Translator Endpoint

http:/fec2-3-130-187-131.us-east-2.compute.amazonaws.com:5000/query

Enter the adress of the endpoint to use for the queries.
Query

{"operation":"sat""solver":"swi"}

Enter Query Name

Submit Query Sync CLIF Semantics Reset model configuration state

| o
Queries X
Query Results CLIF Semantics Solver Specific Semantics Saved Queries
Solution 0 SAT
Clear Query Results Reset model configuration state
| N

This implies, therefore, that the model does indeed have a solution and is not "void". In
contrast with Tutorial #3, there was no need to extract the code corresponding to the
model, nor use SWISH to run the analysis. With the simple query above, we can
ascertain that there is indeed such a configuration.

As in the earlier portion of the tutorial, we can also check that this is not a false product

line by simply asking for two products with the very same query we used before.
{
"solver":

"operation": "ns

"operation n": 2

}

If we run this query, we will observe the following result:

P N
Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Solution 0 SAT

Solution' |:

m Clear Query Results Reset model configuration state
| -

This shows that there are indeed two possible solutions to our problem, and therefore
two possible products, which implies that this is not in fact a "false" product line.

We can use the selector in the middle portion of the result to select which of the
solutions we wish to visualize, which allows us to see the following:

__ _Navigaon ___ VoiceControl L __ TexToSpeech _
Version: 2 1
!
. Tabbing ’ ™\ 4 Advanced
””””” e Range —
) (1.2) \a-1)
,,,,,,,,,,, | |
IndividualCardinality | | .
} v o v o)
| Spatial Classic 1 o . . ’ Spatial kY Classic g

| | |

As can be seen, two distinct solutions are made available to us directly on the
interface, without needing any additional interaction with the solvers to obtain them.
Let's continue with our analysis by examining our model for any potential dead
features with the following query:

"solver": "minizinc",
"operation": "sat",
"iterate over": [
{
"model object": "element",

"object type": ["AbstractFea

"with value": 1

It is worth noting that the primary modification between this query and the one used on
the model from Part 2 is that we have added "AbstractFeature" to the list in
"object_type"; the reason for this is simple: we need to be able to also check elements
of this type, and it suffices to simply add the element type to the list. Running this
query produces the following result:

Queries X

Query Results CLIF Semantics Solver Specific Semantics Saved Queries

Solution 0 SAT

Solution [E

Solution 2 No element failed query

Clear Query Results Reset model configuration state
|

In contrast to the model examined in Part 2 of this tutorial, no element in the model
failed the query, therefore telling us that there are no dead features in this model.

The key takeaway from this is that the system is simple enough that the same set of
queries for the simple model are just as capable as those for the more complex model
and so it goes as the model grows.

Part 4: Practical exercise

Link to the questionnaire: https://forms.gle/Di4K 2mfANHi
With all of the experience you’ve gained thus far, perform the following:

1. Load the model you used for the previous tutorial’s practical portion into

VariaMos.
ClulmngStures
- ,,.—Dﬂ"m""ﬂ{{- s — ,_,,_.. DBManagement
ipping Optienal
Qptoral
r.:'Si-ﬂai_:‘ri r‘ DemoData
remeoe- _."_"l': I"“. | BasicWebViews
wﬂ‘:\ 7/ 777777:
ListOfProducts | (I;I,Ué.;:nl / c:;:‘:‘;m e
Mm_ffi_‘ BasichgmiViews F::r‘.‘ <\‘\D\m\»\l
“I‘-‘I‘ ‘I‘ l \ S serModel
Pmdunﬁnﬂel =
For your convenience, this model is provided to you in the following link:
https://drive. le.com/fil 1a72bXr Kp9ZIWxgCN4W3k_FlGer1 view? =sh

aring
2. Utilize the query system to check that the model is indeed satisfiable using "swi"
as your solver.
With "swi" obtain a configuration for your system.
With "swi" check whether the model constitutes a false product line.
With "swi" check whether there exist dead features in your model.
With "swi" check whether there exist false optional features in your model.

ook

https://forms.gle/Di4K5U8o32mfANHi9
https://drive.google.com/file/d/1q72bXro_qKp9ZlWxgCN4W3k_FIGer1qp/view?usp=sharing
https://drive.google.com/file/d/1q72bXro_qKp9ZlWxgCN4W3k_FIGer1qp/view?usp=sharing

